1.1 Definitions and Terminology

differential equation: An equation containing the derivatives of one or more dependent variables with respect to one or more independent variables.

Example: \(\frac{dy}{dx} = 6y^{2/3} \)

How can you find y?

*Solution in implicit form:

*Solution in explicit form:

*Verify your solution.

Differential equations can be classified by type, order, and linearity.

Type

Ordinary differential equations contain only ordinary derivatives of one or more dependent variables with respect to a single independent variable.

\[
\frac{dy}{dx} = 6y^{2/3}
\]

Examples:

\[
\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 3x = 0
\]

\[
\frac{dx}{ds} + \frac{dy}{ds} + y = 4x
\]
Partial differential equations involve the partial derivatives of one or more dependent variables of two or more independent variables.

\[
\frac{\partial^2 u}{\partial y^2} - \frac{\partial^2 u}{\partial x^2} = 0
\]

Examples:
\[
\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} = 1
\]

*Notation: Leibniz

Prime

Newton’s dot

Subscript

Order:
The order of a differential equation (ODE or PDE) is the order of the highest derivative in the equation.

\[
\frac{dy}{dx} = 6 y^{2/3}
\]

*Examples:
\[
\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 3x = 0
\]
\[
\frac{dx}{ds} + \frac{dy}{ds} + y = 4x
\]

First-order ordinary differential equations can be written in differential form.
Example: \((x + y)dx + x^2 dy = 0\)

*If \(y\) is the dependent variable, we can rewrite the equation using Leibniz notation:

*Or prime notation:

An \(n\)th order ODE in one dependent variable can be written in general form as \(F(x, y, y', y'', ..., y^{(n)}) = 0\), where \(F\) is a real-valued function of \(n + 2\) variables.
*Write the previous example in general form.

In this course, we will make the assumption that we can solve $F(x, y, y', y'',..., y^{(n)}) = 0$ uniquely for the highest derivative, $y^{(n)}$, in terms of the remaining $n + 1$ variables. So we will also use the normal form, $\frac{d^n y}{dx^n} = f(x, y, y', ..., y^{(n-1)})$. Here, f is a continuous real-valued function.

*Write the previous example in normal form.

Linearity:
An n^{th} order ODE is linear if F is linear in $y, y',..., y^{(n)}$. So an n^{th} order linear ODE can be written as $a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + ... + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$ where

1. each coefficient, $a_i(x)$, depends at most on the independent variable x, and
2. the dependent variable and all its derivatives are of the first degree.

Example: $xdy + (y + xy - xe^x)dx = 0$

*Is this ODE linear in y?

*Is this ODE linear in x?

Solution of an ODE: any real-valued function, ϕ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an n^{th} order ODE reduces the equation to an identity.
I is called the interval of definition, interval of existence, interval of validity, or domain.

*Example: Verify that $y = \frac{6}{5} - \frac{6}{5}e^{-20t}$ is a solution of $\frac{dy}{dt} + 20y = 24$ on $I = (-\infty, \infty)$.
Example: Verify that $y = xe^x$ is a solution of $y'' - 2y' + y = 0$ on $I = (-\infty, \infty)$.

Notice that $y = 0$ is also a solution of the previous example. A solution that is identically zero on I is called a **trivial solution**.

*Verify that $y = 0$ is a solution of $y'' - 2y' + y = 0$ on $I = (-\infty, \infty)$.

The domain of the function $\phi(x)$ may not be the same as the interval of definition of the solution $\phi(x)$.

Example: Find the **general solution** of $2y' = y^3 \cos x$

*Implicit form:

We solved $F(x, y, y') = 0$ and found a set $G(x, y, c) = 0$, called a **one-parameter family of solutions**.

*One-parameter family of solutions:

For an nth order ODE $F(x, y, y', y'', \ldots, y^{(n)}) = 0$, we look for an **n-parameter family of solutions**, $G(x, y, c_1, c_2, \ldots, c_n) = 0$.

*Explicit form:
*Use these initial conditions to find a **particular solution** (free of arbitrary parameters):

\[y(0) = 1 \]

* \[\phi(x) = \]

*What is the domain of the function \(\phi(x) \)?

*What is an interval of definition of the solution \(\phi(x) \)?

We usually state the largest interval as the interval of definition.

*Is \(y = 0 \) a trivial solution?

Notice that the solution \(y = 0 \) is not achieved by assigning a value to \(c \). This makes \(y = 0 \) a **singular solution**.

Piecewise-defined solutions

*Example: Solve \(xy' - 4y = 0 \), \(y(1) = 1 \), \(y(-1) = -1 \).